Short Answer

1. The average intensity of the Sun's radiation at the surface of the Earth is 1.37×10^3 W m $^{-2}$.

Calculate (a) the luminosity and (b) the surface temperature of the Sun.

The mean separation of the Earth and the Sun = 1.50×10^{-11} m, radius of the Sun = 6.96×10^{-8} m, Stefan–Boltzmann constant = 5.67×10^{-8} W m $^{-2}$ K $^{-4}$.

2. The radius of star A is three times that of star B and its temperature is double that of B.

Find the ratio of the luminosity of A to that of B.

3. The light from a star at a distance of 70 ly away is received on Earth with an apparent brightness of 3.0×10^{-8} W m⁻². Calculate the luminosity of the star.

4. The luminosity of a star is 4.5×10^{28} W and its distance from the Earth is 88 ly. Calculate the apparent brightness of the star.

