## Sec. 7.4 - Electric Potential

Learning Goal: By the end of today, I will be able to connect gravitational potential energy to electrical potential energy concepts, and solve electrical potential energy problems.

# Gravity

## **Electric**

$$F_{\rm g} = \frac{Gm_1m_2}{r^2}$$

$$F_{\mathsf{E}} = \frac{kq_1q_2}{r^2}$$

$$E_{\rm g} = -\frac{Gm_1m_2}{r}$$

$$E_{\rm E} = \frac{kq_1q_2}{r}$$

Always attractive



As r-> infinity, E goes to zero for both cases.



When placed in an electric field, a charge feels a force. This means that if it moves around in an electric field work will be done. As a result, the charge will either gain or lose electric potential energy. Electric potential energy is the energy that a charge has as a result of its position in an electric field. This is the same idea as a mass in a gravitational field. If we lift a mass up, its gravitational potential energy increases. If the mass falls, its gravitational potential energy decreases



To look at the concept of electric potential energy in a systematic way, we consider the electric potential energy not just of any charge  $q_2$  but of a UNIT positive test charge when in the field of any other charge  $q_1$ .

We call this value of potential energy per unit positive charge the **electric potential,V**.

It is a property of the electric field of the charge  $q_1$  and represents the amount of work necessary to move a unit positive test charge from rest at infinity to rest at any specific point in the field of  $q_1$ . Thus,at a distance  $\mathbf{r}$  from a spherical point charge  $q_1$ , the electric potential is given by

The units of electric potential are joules per coulomb, or volts, and

1 V is the electric potential at a point in an electric field if 1 J of work is required to move 1 C of charge from infinity to that point; 1V = 1 J/C.

### Electric Potential Energy VERSUS Electric Potential

We must always be very careful to distinguish between  $E_{\text{E}}$ , the electric potential energy of a charge at a point, and

V, the electric potential at the point (energy per unit).

They are related by the equation  $E_E = q V$ .

Jelly beans are \$4.50/kg (voltage) if you buy 3kg, the cost is \$13.50 (charge and Energy)

ie.

This electric energy is dependent on the amount of charge, just like gravitational potential energy is dependent on the mass of the object.

Unit measurements

g = (Gravitational field strength is N/kg)

 $\mathcal{E}$  = (Electric field strength is N/C)

V = (Gravitational potential is J/kg) very seldom used

V = (Electric potential is J/C)

**Electric Potential Difference** is the amount of energy required to move a unit test charge from one point to another.

ie. moving from -15V to -10V is a change of +5V

For a <u>point charge</u> q,the electric potential difference between two points A and B can be found by subtracting the electric potentials due to the charge at each position:

$$\Delta V = V_{\text{B}} - V_{\text{A}} = \frac{kq}{r_{\text{B}}} - \frac{kq}{r_{\text{A}}} = kq \left(\frac{1}{r_{\text{B}}} - \frac{1}{r_{\text{A}}}\right)$$

\* when r = infinity, what does the formula turn into?

### Working with Plates

When you lift a ball up with your hand, you apply a force over a distance, and the gravitational potential energy difference changes.

$$\Delta E_g = +20J$$
 W = F \* d

$$\vec{\varepsilon} = \frac{\vec{F}_{E}}{q}$$
 field strength (N/C)

$$F_E = \varepsilon q$$



To move from B to A, work must be done.

$$W = Fr$$
 since F and r are in the same direction

$$W = q\varepsilon r$$
 since  $F = F_{\rm E} = q\varepsilon$ 

Therefore, since  $W = \Delta E_{\rm E} = q \Delta V$ 

$$q\Delta V = q\varepsilon r$$

or 
$$\varepsilon = \frac{\Delta V}{r}$$
 or  $\Delta V = \varepsilon r$ 

N\*m/C

J/C

## Example

What are we looking for?

Calculate the electric potential a distance of 0.40 m from a spherical point charge of  $+6.4 \times 10^{-6}$  C. (Take V = 0 at infinity.)

#### **Solution**

$$r = 0.40 \text{ m}$$

$$q = +6.4 \times 10^{-6} \,\mathrm{C}$$

$$V = ?$$

$$V = \frac{kq}{r}$$
=  $\frac{(9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2)(6.4 \times 10^{-6} \text{ C})}{0.40 \text{ m}}$ 

$$V = 1.5 \times 10^5 \,\text{V}$$

The electric potential is 1.5 imes 10  $^5$  V.

How much work must be done to increase the potential of a charge of 3.0  $\times$  10<sup>-7</sup> C by 120 V?

#### **Solution**

$$q = 3.0 \times 10^{-7} \text{ C}$$
 $\Delta V = 120 \text{ V}$ 
 $W = ?$ 

$$W = \Delta E_{\text{E}}$$

$$= q \Delta V$$

$$= (3.0 \times 10^{-7} \text{ C})(120 \text{ V})$$
 $W = 3.6 \times 10^{-5} \text{ J}$ 

The amount of work that must be done is 3.6  $\times$  10<sup>-5</sup> J.

In a uniform electric field, the potential difference between two points 12.0 cm apart is  $1.50 \times 10^2$  V. Calculate the magnitude of the electric field strength.

#### **Solution**

$$r = 12.0 \text{ cm}$$
  
 $\Delta V = 1.50 \times 10^2 \text{ V}$ 

$$\varepsilon = ?$$

$$\varepsilon = \frac{\Delta V}{r}$$
$$= \frac{1.50 \times 10^2 \,\mathrm{V}}{1.20 \,\mathrm{x} \,10^{-1} \,\mathrm{m}}$$

$$\varepsilon = 1.25 \times 10^3 \text{ N/C}$$

The magnitude of the electric field strength is  $1.25 \times 10^3$  N/C.

## SUMMARY

### Electric Potential

- The electric potential energy stored in the system of two charges  $q_1$  and  $q_2$  is  $E_{\rm E} = \frac{kq_1q_2}{r}$ .
- The electric potential a distance r from a charge q is given by  $V = \frac{kq}{r}$ .
- The potential difference between two points in an electric field is given by the change in the electric potential energy of a positive charge as it moves from one point to another:  $\Delta V = \frac{\Delta E_{\rm E}}{q}$
- The magnitude of the electric field is the change in potential difference per unit radius:  $\mathbf{\varepsilon} = \frac{\Delta V}{r}$



Read 349 - 359 (good healthcare examples)

page 354 #1-4

page 358 #5 (top)

page 358 #1,3,4,7