Review of Trig Laws to solve for the resultant vector:

SOHCAHTOA

$$\sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}}$$
 $\cos \theta = \frac{adjacent}{\text{Hypotenuse}}$ $\tan \theta = \frac{\text{Opposite}}{adjacent}$

Sine Law

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$
 (capital letters are angles, lower case are sides)

Cosine Law

$$z^2 = x^2 + y^2 - 2xy \cdot \cos(Z)$$

Sec. 1.2a - Acceleration in Two Dimensions

Learning Goal:

- working with vectors in two space
- choosing the correct model

Vectors and Direction

Resultants

(the vector that goes from the "start" to the "finish" in a straight line)

$$a+b=$$

Vector	Х	Y
D1		
D2		
Total		

$$a+b=$$

Vector	X	Υ
D1		
D2		
Total		

Vector	X	Υ
D1		
D2		
Total		

Adding and Subtracting - 2 Dimensions

resultant =
$$a - b$$

or = $a + (-b)$

Subtracting Vectors Practice

Vectors

Add d₁+d₂ Subtract d₁-d₂

 $d_1 = 5m [E] \longrightarrow$

$$d_2 = 5m [E] \longrightarrow$$

 $d_1 = 5m [E]$ —

$$d_2 = 5m [NE]$$

$$d_1 = 5m [SE]$$

$$d_2 = 5m [NE]$$

"Differences, Deltas, Change In"

$$a_1 + \Delta a = a_2$$

$$\Delta a = a_2 - a_1$$

$$\Delta a = a_2 + (-a_1)$$

Challenge - Determine the change in Velocity, ΔV

Two options - two different meanings

Challenge - Determine the change in Velocity, △V

What is the average acceleration if delta "t" is 0.5 sec?

Acceleration in Two Dimensions

All Vectors (displacement, velocity, acceleration) can also be broken up into their respective components.

Suggested Homework

Read page 28 - 29

page 29 #25, 28, 29

page 30 - 31 #9, 11, 15