## **Laws of Conservation**

Learning Goals: I will be able to ...

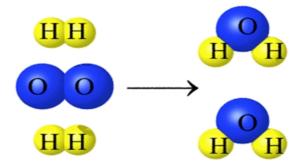
- define the Law of Conservation of Matter
- define the Law of Conservation of Mass
- use the laws to determine the masses of reactants and products

# **Class Discussion:**

Recall the Inquiry Activity: Does the Mass Add Up?

What was your conclusion?

So, is anything lost during a chemical reaction?


Answer: NO!

All chemical changes in a reaction obey the following two laws:

#### 1. Law of Conservation of Matter

In a chemical reaction, matter is neither created nor destroyed.

Therefore, the same number of atoms present before the chemical reaction must be present after the chemical reaction is complete.



#### 2. Law of Conservation of Mass

In a chemical reaction, the total mass of the reactants is always equal to the total mass of the products.

### Example:

If 5g of hydrogen reacts with oxygen and produces 13g of water, what was the mass of oxygen?

5g **8g** 13g

Try Examples 1-3 on the worksheet

Let's look at the reaction from yesterday's example:

FeCl3 (aq) + NaOH (aq) à NaCl (aq) + Fe(OH)3 (s)

Does the chemical equation obey the *Law of Conservation* of *Matter?* 

| reactants | products |
|-----------|----------|
|           |          |
|           |          |
|           |          |
|           |          |

FeCl3 (aq) + NaOH (aq) à NaCl (aq) + Fe(OH)3 (s)

Does the chemical equation obey the *Law of Conservation* of *Mass?* 

| reactants | products |
|-----------|----------|
|           |          |
|           |          |
|           |          |
|           |          |
|           |          |

In order to obey the Law of Conservation of Matter and the Law of Conservation of Mass, chemical equations need to be BALANCED.

Balancing chemical equations involves placing *coefficients* in front of the chemical formulas.

Example: NaSO4



Before we can balance chemical equations, it is important to know how to count atoms:

### **Examples**:

Na<sub>2</sub>CO<sub>3</sub>

3K<sub>2</sub>SO4

2Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>