There are two ways to determine the characteristics of images formed by lenses:

- Ray diagrams
- Algebraic equation

LENS TERMINOLOGY

Where:

 d_0 = distance from the object to the optical centre

 d_i = distance from the image to the optical centre

 h_o = height of the object

 h_i = height of the image

f = focal length of the lens; distance from the optical centre to the principal focus (F)

The Thin Lens Equation	Magnification Equation
 \frac{1}{f} = \frac{1}{d_i} + \frac{1}{d_o} Image distances (d_i) are positive for real images (opposite side of lens) Image distances are negative for virtual images (same side of lens) Focal length (f) is positive for converging lenses and negative for diverging lenses. 	$M = \frac{h_i}{h_o} = \frac{-d_i}{d_o}$ • Magnification is positive for an upright image. • Magnification is negative for an inverted image.

Example 1 A converging lens has a focal length of 17 cm. A candle is located 48 cm from the lens. What type of image will be formed, and where will it be located?
Example 2 An object 8.5 cm high is placed 28 cm from a converging lens. The focal length of the lens is 12 cm. Calculate the image distance and the image height.
Example 3 A diverging lens has a focal length of 29 cm. A virtual image of a marble is located 13 cm in front of the lens. Where is the marble located?
Example 4 A small toy building block is placed 7.2 cm in front of a lens. An upright, virtual image of magnification 3.2 is noticed. Where is the image located?