Warm Up

 $\log_a 1 = 0$

Evaluate

 $\log_a a = 1$

$$\log_{12} 12^8 =$$

$$\log_a a^x = x$$
$$a^{\log_a x} = x$$

$$\log_3 9^{10} =$$

Sep 23-9:25 AM

Sec 8.4 Laws of Logarithms

Recall: $a^x \times a^y = a^{x+y}$

Let $m = a^x$ and $n = a^y$

 $mn = a^{x+y}$ write in logarithmic form

 $\log_a mn = x + y$

replace x and y with their log counterparts

 $m = a^x$ then $\log_a m = x$

 $n = a^y$ then $\log_a n = y$

then

 $\log_a mn = \log_a m + \log_a n$

By similar reasoning the following log rules can be developed:

Product law:
$$\log_a xy = \log_a x + \log_a y$$

Quotient law:
$$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$$

Power law:
$$\log_a x^r = r \log_a x$$

Proof on page 470 - 471

Dec 31-3:09 PM

Let's practice...

$$\log_4 2.5 + \log_4 25.6$$

$$\log_2 80 - \log_2 5$$

$$\log_5 \sqrt[3]{25}$$

Rewrite this is terms of $log_a x$, $log_a y$ and $log_a w$

$$\log_a \sqrt{\frac{x^3 y^2}{w}}$$

Dec 21-1:54 PM

Homework: p475 #1-3ace, 4,6,9,10