Exponents and Exponent Rules

Terminology

Power (the whole package)

Feb 23-9:05 AM

Standard Form	and	Expanded Form
---------------	-----	---------------

 2^3 2 x 2 x 2

 5^4 $5 \times 5 \times 5 \times 5$

 $(-3)^2$ $(-3) \times (-3)$

 $(a+5)^3$ (a+5) x (a+5) x (a+5)

Basic Exponent Rules

$$3^4 \times 3^5$$

$$a^m \times a^n = a^{m+n}$$

$$\frac{2^5}{2^3}$$

$$\frac{a^m}{a^n} = a^{m-n}$$

$$\left(2^3\right)^2$$

$$\left(a^{m}\right)^{n}=a^{mn}$$

$$\left(\frac{3}{2}\right)^3$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

Sep 5-2:07 PM

Mixed Term Operations

Simplify

$$(2^3)(a^5)(2^4)(a^3)$$

Simplify

$$\frac{5^4 a^6 b^8}{5^2 a^4 b^7}$$

=

Feb 23-9:37 AM

$$\frac{27}{27} = \frac{3^3}{3^3} \qquad \longrightarrow \qquad \frac{27}{27} = 3^{3-3}$$

$$\frac{27}{27} = 1$$
 \longrightarrow $\frac{27}{27} = 3^{\circ}$

$$a^{0} = 1$$

The NEGATIVE Exponent Rule

By patterning....

$$2^4 =$$

$$2^3 =$$

$$2^{1} =$$

 $a^{-n} = \frac{1}{a^n}$

Feb 23-9:45 PM

Rational Exponents

$$\sqrt[3]{8} =$$

$$\sqrt[n]{a} = a^{\frac{1}{n}}$$

 $27^{\frac{-2}{3}}$

or

 $27^{\frac{-2}{3}}$

Sep 19-9:50 AM

Sec 8.1 and 8.2

The logarithmic function

Recall the exponential function: $y = a^x$

X	Y
-2	
-1	
0	
1	
2	

What about the inverse though?

Graph the inverse on the same grid.

To find the inverse of a function, switch the *x* and *y* variables

So...
$$y = 2^x$$
 becomes $x = 2^y$

We need to rearrange to put in function notation, but we don't have an operation to do this... so we invented LOGARITHMS

$$x = 2^y$$
 is written $y = \log_2 x$

Dec 31-1:56 PM

Remember

$$x = 2^y$$
 is written $y = \log_2 x$

$$y = \log_2 x$$

"2" to the exponent "y" = "x"

How do we use this?

Ex:

Evaluate:

$$\log_3 27 = x$$

$$log_4 16 = x$$

$$log_4 1 = x$$

$$\log_2 \frac{1}{4} = x$$

May 22-11:31 AM

Graphing logarithms

 $y = \log_a x$ This is the base function.

"a" is the base and determines the steepness of the curve.

The domain of a log function is x>0

The range of a log function is $y \in \mathbb{R}$

Graph:

$$f(x) = \log_2 x \qquad \text{and} \qquad g(x) = \log_5 x$$

$$f(x) \qquad \qquad g(x)$$

$$X \qquad Y \qquad \qquad X \qquad Y$$

$$0.25 \qquad -2 \qquad \qquad \frac{1}{25} 0.04 \qquad -2$$

A	1	
0.25	-2	
0.5	-1	
1	0	
2	1	
4	2	

Λ	Y
$\frac{1}{25}$ 0.04	-2
$\frac{1}{5}$ 0.2	-1
1	0
5	1
25	2

Dec 31-2:00 PM

Translations of log functions are just like every other function that we have learned so far...

$$f(x) = a \log_{10}(k(x-d) + c)$$

transformed logs.gsp

Dec 31-2:18 PM

Homework: p451 #5,6,7,9 p457 #1,3,4i,ii

transformed logs.gsp