Sec 5.3

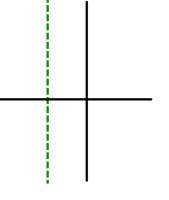
Graphs of Rational Functions in the Form...

$$f(x) = \frac{ax + b}{cx + d}$$

-these graphs will have both a vertical and horizontal asymptote.

-in order to graph, we need to find the 2 asymptotes and determine end behaviours. Also look for other key points (intercepts, "easy to find" points)

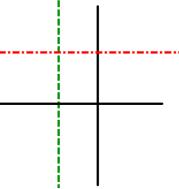
Nov 5-10:49 AM


Graph
$$y = \frac{3x-5}{x+2}$$

Step 1: Determine the vertical asymptote(s)

Step 2: Determine the end behaviour as the function approaches the

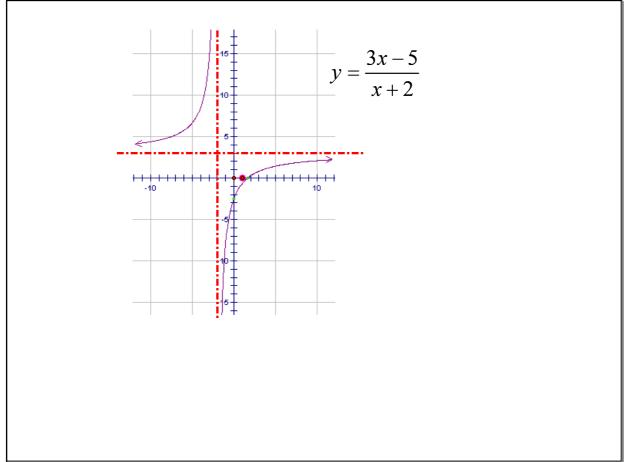
asymptotes


X	Y
-1.9	
-1.99	
-2	
-2.01	
-2.1	

Step 3: Determine the horizontal asymptote.

$$y = \frac{3x - 5}{x + 2}$$

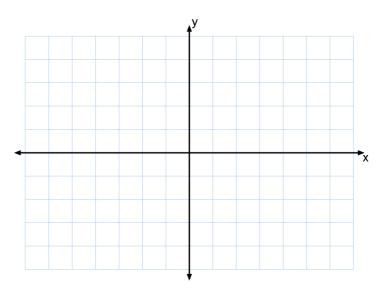
Step 4: Determine the asymptote (end) behaviour as the function approaches the asymptotes.



Nov 5-12:31 PM

Step 5: Find key points

$$y = \frac{3x - 5}{x + 2}$$
 y-int


x-int

Nov 5-12:27 PM

Remember, you still have to watch for factorable denominators and numerators.

Ex: $y = \frac{2x+6}{x+3}$

Functions where a=0

$$f(x) = \frac{ax+b}{cx+d} = \frac{b}{cx+d}$$

Vertical asymptote:

Horizontal asymptote:

Nov 5-1:21 PM

Homework

Read the "IN SUMMARY" box carefully on p271

P273 #1, 2, 4ac, 5ac