Algebraic Approach for Completing the Square

To complete the square we only need to work with the $\mathbf{ax}^2 + \mathbf{bx}$ terms. Leave the "c" term till the very end.

Guidelines

- 1. a = 1 before you start, this can be accomplished by factoring
- 2. find half of the b term and then square it
- 3. add and subtract that value to the expression, writing the positive term first
- 4. the first three terms should make up a perfect square trinomial, and can be rewritten with brackets squared

Example
$$x^2 + 2x$$

May 9-11:57 AM

To complete the square we only need to work with that 2 + bx terms. Leave the "c" term till the very end.

Guidelines

- 1. a = 1 before you start, this can be accomplished by factoring
- 2. find half of the b term and then square it
- 3. add and subtract that value to the expression, writing the positive term first
- 4. the first three terms should make up a perfect square trinomial, and can be rewritten with brackets squared

Example
$$x^2 - 2x + 5$$

To complete the square we only need to work with the $\mathbf{ax}^2 + \mathbf{bx}$ terms. Leave the "c" term till the very end.

Guidelines

- 1. a = 1 before you start, this can be accomplished by factoring
- 2. find half of the b term and then square it
- 3. add and subtract that value to the expression, writing the positive term first
- 4. the first three terms should make up a perfect square trinomial, and can be rewritten with brackets squared

Example $2x^2 + 16x$

May 9-11:57 AM

To complete the square we only need to work with the $\mathbf{ax}^2 + \mathbf{bx}$ terms. Leave the "c" term till the very end.

Guidelines

- 1. a = 1 before you start, this can be accomplished by factoring
- 2. find half of the b term and then square it
- 3. add and subtract that value to the expression, writing the positive term first
- 4. the first three terms should make up a perfect square trinomial, and can be rewritten with brackets squared

Example $2x^2 + 12x + 7$

To complete the square we only need to work with the $ax^2 + bx$ terms. Leave the "c" term till the very end.

Guidelines

- 1. a = 1 before you start, this can be accomplished by factoring
- 2. find half of the b term and then square it
- 3. add and subtract that value to the expression, writing the positive term first
- 4. the first three terms should make up a perfect square trinomial, and can be rewritten with brackets squared

$$-5x^2 - 20x + 7$$

May 16-12:51 PM

Challenge Time - mu ha ha

To complete the square we only need to work with the $ax^2 + bx$ terms. Leave the "c" term till the very end.

Guidelines

- 1. a = 1 before you start, this can be accomplished by factoring
- 2. find half of the b term and then square it
- 3. add and subtract that value to the expression, writing the positive term first
- 4. the first three terms should make up a perfect square trinomial, and can be rewritten with brackets squared

$$x^2 + 5x$$

May 16-12:51 PM

To complete the square we only need to work with the $ax^2 + bx$ terms. Leave the "c" term till the very end.

Guidelines

- 1. a = 1 before you start, this can be accomplished by factoring
- 2. find half of the b term and then square it
- 3. add and subtract that value to the expression, writing the positive term first
- 4. the first three terms should make up a perfect square trinomial, and can be rewritten with brackets squared $\,$

$$x^2 - 7x$$

To complete the square we only need to work with the $\mathbf{ax}^2 + \mathbf{bx}$ terms. Leave the "c" term till the very end.

Guidelines

- 1. a = 1 before you start, this can be accomplished by factoring
- 2. find half of the b term and then square it
- 3. add and subtract that value to the expression, writing the positive term first
- 4. the first three terms should make up a perfect square trinomial, and can be rewritten with brackets squared

$$3x^2 - 16x$$

May 16-12:51 PM

To complete the square we only need to work with the $\mathbf{ax}^2 + \mathbf{bx}$ terms. Leave the "c" term till the very end.

Guidelines

- 1. a = 1 before you start, this can be accomplished by factoring
- 2. find half of the b term and then square it
- 3. add and subtract that value to the expression, writing the positive term first
- 4. the first three terms should make up a perfect square trinomial, and can be rewritten with brackets squared

$$4.9x^2 - 98x + 10$$

Find the vertex for the following: $y = 2x^2 + 10x - 5$

May 16-12:51 PM

Try the given Task please.