Issues with homework?

p76 #1ace, 4, 7, 9, 12

Sep 23-10:45 AM

Sec 2.2

Instantaneous Rates of Change

When a rate is needed at a single point, we are not able to use the slope formula.

Need 2 points for
$$m = \frac{\Delta y}{\Delta x}$$

Delta x would be zero if we used the same point twice, undefined.

INVESTIGATE the Math

A small pebble was dropped into a 3.0 m tall cylindrical tube filled with thick glycerine. A motion detector recorded the time and the total distance that the pebble fell after its release. The table below shows some of the measurements between 6.0 s and 7.0 s after the initial drop.

Time, t (s)	6.0	6.2	6.4	6.6	6.8	7.0
Distance, d(t) (cm)	208.39	221.76	235.41	249.31	263.46	277.84

? How can you estimate the rate of change in the distance that the pebble fell at exactly t = 6.4 s?

A. Calculate the average rate of change in the distance that the pebble fell during each of the following time intervals.

i) $6.0 \le t \le 6.4$ ii) $6.2 \le t \le 6.4$

iii) $6.4 \le t \le 7.0$ iv) $6.4 \le t \le 6.8$ v) $6.4 \le t \le 6.6$

- **B.** Use your results for part A to estimate the instantaneous rate of change in the distance that the pebble fell at exactly t = 6.4 s. Explain how you determined your estimate.
- C. Calculate the average rate of change in the distance that the pebble fell during the time interval $6.2 \le t \le 6.6$. How does your calculation compare with your estimate?

instantaneous rate of change

the exact rate of change of a function y = f(x) at a specific value of the independent variable $x = a_i$ estimated using average rates of change for small intervals of the independent variable very close to the value x = a

Sep 23-10:44 AM

We have several ways to solve:

1/ Preceding intervals (left of point)

of point) $Def^n p80$

Find the ARC for points before x=2 and the point at x=2 Have the first point get closer and closer to 2.

Find the ROC at x=2

X	Y
1	
1.5	
1.9	
1.99	

$$(1,0.5) \rightarrow (2,2)$$
 $ARC = \frac{2-0.5}{2-1} = 1.5$

$$(1.5, 1.125) \rightarrow (2, 2)$$
 $ARC = \frac{2 - 1.125}{2 - 1.5} = 1.75$

$$(1.9, 1.805) \rightarrow (2, 2)$$
 $ARC = \frac{2 - 1.805}{2 - 1.9} = 1.95$

$$(1.99, 1.98005) \rightarrow (2, 2)$$
 $ARC = \frac{2 - 1.98005}{2 - 1.99} = 1.995$

Find the ARC for points after x=2 and the point at x=2 Have the second point get closer and closer to 2.

Find the ROC at x=2

X	Y
3	
2.5	
2.1	
2.01	

Sep 21-12:50 PM

3/ Centred interval (both sides of point)

Have the two points get closer and closer to 2.

Defⁿ p81 Find the ARC for points before and after the point at x=2

Find the ROC at x=2

X	Y
3	
2.1	
1.9	
1	

Example

A cubic crystal is growing in a laboratory, where its volume is $V(x)=x^3$, where x is the side length.

Find the instantaneous rate of change of volume wrt side length x, when the crystal has side length 4 cm.

Sep 24-12:51 PM

Differential Quotient

Fancy formula for slope between two points but... written in a way to show the difference between the two x values.

$$\frac{\Delta y}{\Delta x} = \frac{f(a+h) - f(a)}{h}$$
, where h is a small #

Sep 24-10:54 AM