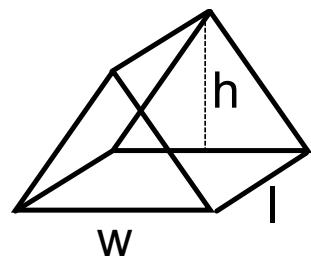

Surface Area of 3D shapes

Rectangular Prism

Diagram

(surface area - the area of all the sides)

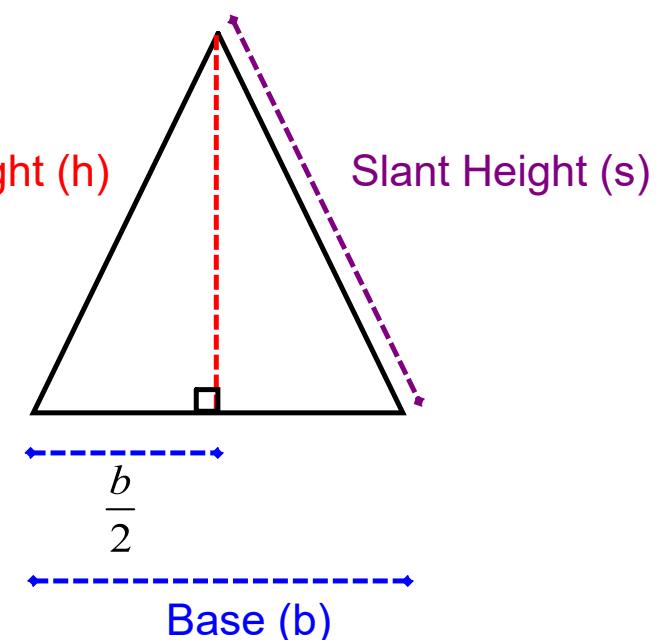
$SA =$


Net

Triangular Prism

(surface area - the area of all the sides)

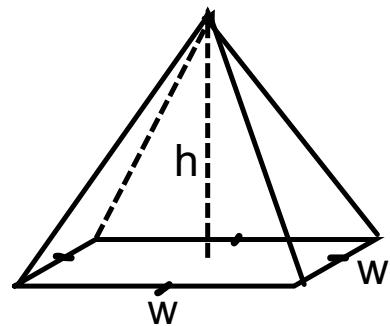
SA =


Diagram

Net

SLANT Height is the length measurement of the side that is NOT perpendicular to the base. The side that is "leaning" is the slant height.

Slant height, the base, and the height can all be related together with the Pythagorean Theorem.

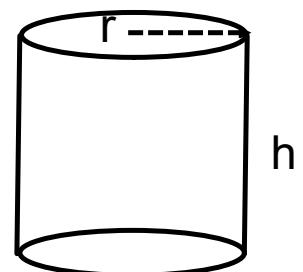
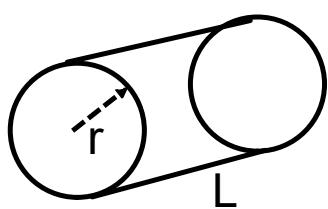


Square Based Pyramid

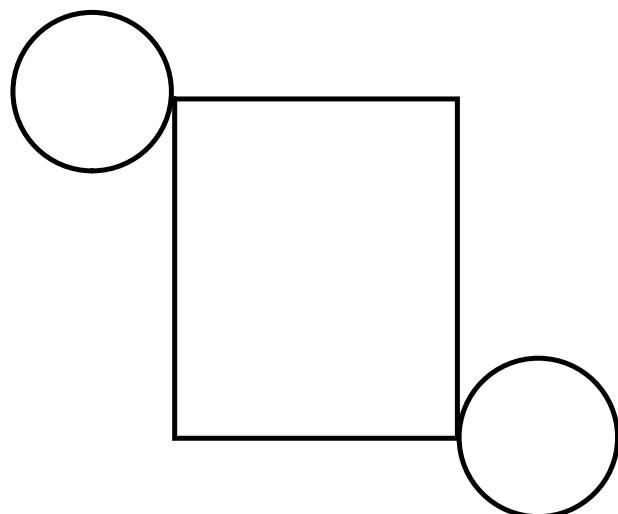
Diagram

(surface area - the area of all the sides)

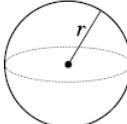
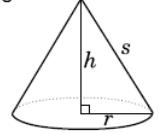
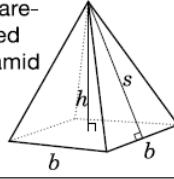
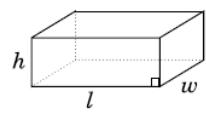
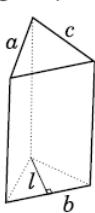
$SA =$

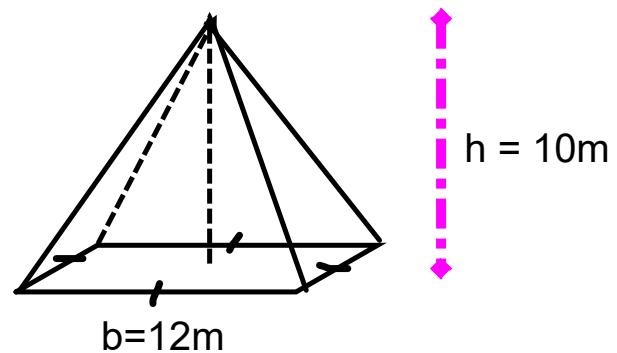



Net


Circle Prism (cylinder)

SA =






Diagram


Net

3D Shapes

Geometric Figure	Surface Area	Volume
Cylinder 	$A_{\text{base}} = \pi r^2$ $A_{\text{lateral surface}} = 2\pi r h$ $A_{\text{total}} = A_{\text{2 bases}} + A_{\text{lateral surface}}$ $= 2\pi r^2 + 2\pi r h$	$V = (A_{\text{base}})(\text{height})$ $V = \pi r^2 h$
Sphere 	$A = 4\pi r^2$	$V = \frac{4}{3} \pi r^3$ or $V = \frac{4\pi r^3}{3}$
Cone 	$A_{\text{lateral surface}} = \pi r s$ $A_{\text{base}} = \pi r^2$ $A_{\text{total}} = A_{\text{lateral surface}} + A_{\text{base}}$ $= \pi r s + \pi r^2$	$V = \frac{(A_{\text{base}})(\text{height})}{3}$ $V = \frac{1}{3} \pi r^2 h$ or $V = \frac{\pi r^2 h}{3}$
Square-based pyramid 	$A_{\text{triangle}} = \frac{1}{2} b s$ $A_{\text{base}} = b^2$ $A_{\text{total}} = A_{\text{4 triangles}} + A_{\text{base}}$ $= 2bs + b^2$	$V = \frac{(A_{\text{base}})(\text{height})}{3}$ $V = \frac{1}{3} b^2 h$ or $V = \frac{b^2 h}{3}$
Rectangular prism 	$A = 2(wh + lw + lh)$	$V = (\text{area of base})(\text{height})$ $V = lwh$
Triangular prism 	$A_{\text{base}} = \frac{1}{2} bl$ $A_{\text{rectangles}} = ah + bh + ch$ $A_{\text{total}} = A_{\text{rectangles}} + A_{\text{2 bases}}$ $= ah + bh + ch + bl$	$V = (A_{\text{base}})(\text{height})$ $V = \frac{1}{2} blh$ or $V = \frac{blh}{2}$

Determine the Surface Area and Volume of the following:

