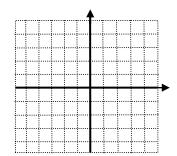
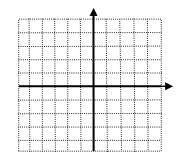

## **Graphing Quadratics**


- 1. The graph shows the height of a basketball over time after it was thrown.
  - a) What was the maximum height reached by the basketball?
  - b) Approximately how long did it take for the ball to reach this maximum height?
  - c) Suppose the basketball was originally thrown from a player's hands that were level with the top of his head. Approximately how tall is the player?



2. Graph each of the following by making a table of value. For each, identify its vertex, zeros, axis of symmetry, y-intercept, direction of opening, and whether it has a minimum or maximum.


a) 
$$y = -x^2 + 2x$$

| X  | У |
|----|---|
| -2 |   |
| -1 |   |
| 0  |   |
| 1  |   |
| 2  |   |



b) 
$$y = 0.5x^2 - x - 4$$

| X  | У |
|----|---|
| -4 |   |
| -2 |   |
| 0  |   |
| 2  |   |
| 4  |   |



3. A competitive diver does a handstand dive from a platform. This table of values shows the time in seconds and the height of the diver, relative to the surface of the water, in metres.

| Time (s)   | 0  | 0.3  | 0.6  | 0.9  | 1.2  | 1.5   |
|------------|----|------|------|------|------|-------|
| Height (m) | 10 | 9.56 | 8.24 | 6.03 | 2.94 | -1.03 |

- a) How tall is the platform?
- b) What is the vertex? What information is it giving?
- c) When does the diver hit the water?

4. A harbour ferry service has 240,000 riders per month who pay a ticket price of \$2. The price will be increasing next month. Previously price increases have shown that for every \$0.10 increase in the price, the number of riders will drop by 10,000.

a) Complete the table. Then graph the data using Desmos.

| Fare (\$) | 2.00    | 2.10 | 2.20 | 2.30 | 2.40 | 2.50 |
|-----------|---------|------|------|------|------|------|
| Riders    | 240,000 |      |      |      |      |      |

b) What price provides the most revenue? What is this revenue amount?