Slope

- Slope measures the steepness and direction of a line, it is another way of measuring rate of change.
- On a graph, slope is read from left to right the same as how you read words.

Positive slope

- Up to the right

Negative slope

- Down to the right

Zero slope

- Horizontal

No slope (undefined)

- Vertical

- Slope has the symbol 'm' and is defined by $m = \frac{Rise}{Run}$
- From a graph, working left to right, count the rise and run between two known points.

Rise: up/down (if it is down - a negative rise)

Run: distance from left to right

Ex/ Calculate the slope of the lines below.

m = rise 4 = 2) reduce (divide)

Ex/ What is the slope between the points:

a)
$$A(-4.0)$$
 and $B(-1.3)$

b)
$$C(3,-2)$$
 and $D(-1,-4)$

c)
$$E(-2,-1)$$
 and $F(-2,4)$

- Not everything will always fit nicely on a graph, so we need to be able to extend these ideas!
- Without using a graph, we can use the difference between two known points to calculate the slope.
- Here, $m = \frac{y_2 y_1}{x_2 x_1}$ where (x_1, y_1) and (x_2, y_2) are the coordinates of the known points.

Ex/ Calculate the slope between the following pairs of points. The describe the line geometrically.

$$m = \frac{-3-1}{1-8}$$

$$= -\frac{4}{-7}$$

$$= \frac{4}{7}$$
host control reduce

$$M = \frac{3-3}{-6-(-1)}$$

d) M(-4,-5) and N(-2,9)

$$M = \frac{9 - (-5)}{-2 - (-4)}$$

$$= \frac{14}{2}$$

$$= 7$$