Real Word Problems with Triangles

- When using trigonometry in the real-world, we must often interpret how a right-angle triangle can be applied to a given situation.
- There are 2 common situations.

Angles of Elevation

- Angle upwards from the horizontal

Angles of Depression

- Angle downwards from the horizontal

- The angles of elevation and depression are related by the z-pattern and are therefore equal.

Ex/ The angle of elevation of the sun is 23°. If a building is 76 m tall, how long will its shadow be?

Ex/ A hill rises 50 m for every 1000 m of run. What is the angle of elevation of the hill?

$$tan x = \frac{50}{1000}$$

 $x = tan^{-1} (50/1000)$
= 2.86°

Ex/ From a point 8.5 m from the base of a flagpole, the angle of elevation to the top of the flagpole is 42°. Find the height of the flagpole.

$$\tan 42 = \frac{x}{8.5}$$

$$8.5 \tan 42 = x$$

$$7.65 = x$$

Ex/ A plane approaching a runway is at an elevation of 2500 feet. The plane is descending at an angle of 13°. How far is the plane horizontally from the airport?

Ex/ From the top of a cliff that is 100 m high, a boat is spotted on the water below at an angle of depression of 28°. How far is the boat from the base of the cliff.

Ex/ Two buildings are 38.0 m apart. From the top of the shorter building, the angle of elevation to the top of the taller building is 27° and the angle of depression to the base of the taller building is 35°. Determine the height of each building.