Trigonometric Identities

Learning Goal: By the end of today, I will be able to use the Pythagorean and quotient trigonometric identities to simplify algebraic expressions.

Nov 24-8:51 PM

Prove the following is true or false:

$$(8+2)^2 - 4(5) = (4)^2(5)$$

Prove the following is true or false:

$$(x+2)^2-1=(x+1)(x+3)$$

Nov 24-9:07 PM

To prove a trigonometric statement is true or false, we need a few more tools; trigonometric identities will be those tools. Identities are known relationships that are always true and can be used to simplify a complex expression to a simplified expression.

Quotient Identity

Isolate x or y

 $\sin \theta =$

 $\cos\theta =$

 $\tan \theta =$

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

Nov 24-9:18 PM

Pythagorean Identity

 $\sin \theta =$

$$x^2 + y^2 = h^2$$
 Divide by h²

 $\cos\theta =$

 $\tan \theta =$

 $\sin^2\theta + \cos^2\theta = 1$

Prove the following:

$$\tan \theta \cos \theta = \sin \theta$$

Nov 24-9:26 PM

Prove the following:

$$\frac{\tan\theta}{\cos\theta} = \frac{\sin\theta}{1-\sin^2\theta}$$

Prove the following:

$$1 - \cos^2 \theta = \sin \theta \cos \theta \tan \theta$$

$$Ls = Rs =$$

Nov 24-9:26 PM

Identity Strategies

- 1. convert Tan using quotient identity
- 2. look for squared terms (Pythagorean identity)
- 3. compare the number of TERMS
- 4. compare the denominators

Homework

Page 310-11 #1-3, 5,8,12,14

Nov 24-9:33 PM