Exact Triangles and More

Learning Goal: By the end of today, I will be able to use exact values instead of decimals when working with right triangles that have a 30°, 60° or 45° angle.

Nov 11-8:15 PM

Warm Up

Determine the missing angle:

$$\tan \theta = \frac{5}{12}$$

$$\sin\theta = \frac{3}{5}$$

When we are given a primary trigonometric ratio we can use it to draw an approximate triangle using the ratio.

$$\tan \theta = \frac{5}{12} \qquad \tan \theta = \frac{opp}{adj}$$

Nov 11-8:17 PM

Solve for the missing angle and draw the triangle that goes with each of the following:

$$\tan\theta = \frac{15}{8}$$

$$\cos\theta = \frac{7}{10}$$

Exact Triangles

45 - 45 - 90

Solve for the hypotenuse (not in decimal form)

Find the ratios for sin, cosine and tangent

Nov 11-8:23 PM

Exact Triangles

<u>30 - 60 - 90</u>

Solve for the missing "x" (not in decimal form)

Find the ratios for sin, cosine and tangent

*For these triangles the ratio of sides are always the same

Values for the six trigonometric functions

θ (Radians)	θ(Degrees)	$sin\theta$	cosθ	tan∂	cscθ	secθ	cotθ
$\frac{\pi}{6}$	30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$	√3
$\frac{\pi}{4}$	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
$\frac{\pi}{3}$	60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	√3	$\frac{2\sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$

Nov 11-8:28 PM

Determine the exact values for the following:

$$\sin 60^{\circ} =$$

$$\cos 30^{\circ} =$$

Without using a calculator determine the value of the missing angle.

$$\sin A = \frac{1}{2}$$

$$\cos A = \frac{1}{\sqrt{2}}$$

$$\sin A = \frac{\sqrt{3}}{2}$$

Nov 11-8:42 PM

Homework

Page 286-7 #3-7, 9,11

4-3 - summary.pdf