Section 3.2 - Finding Max and Min Values

Learning Goal: By the end of today, we will be able to determine the maximum or minimum values using

- (i) a factored form approach
- (ii) a vertex form approach (completing the square)

May 8-8:05 PM

Factored Form Approach

Solve the following linear equations:

(a)
$$5x + 15 = 0$$

(b)
$$7x - 4 = -3x + 26$$

(c)
$$5(a+1)=0$$

May 8-8:06 PM

For the following, what can you say for certain about each equation.

(i)
$$(5)(a) = 0$$

(ii)
$$(-9)(b) = 0$$

(iii)
$$(4)(a)(b) = 0$$

(iv)
$$(a)(b)(c) = 0$$

(vi)
$$(4)(a+1) = 0$$

(vii)
$$(9)(x - 8) = 0$$

BIG IDEA

When two or more variables are multiplied together for a product of ZERO, at least one of the unknowns must be a zero.

$$a \cdot b = 0$$

Case 1

Case 2

a = 0 and "b" is a number b = 0 and "a" is a number

Oct 8-4:47 PM

Solve the following:

$$(x+1)(x-5)=0$$

This is asking, when does the graph f(x) have y values equal to zero.

$$f(x) = (x+1)(x-5)$$

Solving for a Product of ZERO, in Factored form Solve for the given unknowns:

(a)
$$(x)(x+1) = 0$$

(b)
$$(x-3)(x+7)=0$$

(c)
$$(2x-1)(3x+5)=0$$

(d)
$$(x + 5)(x - 7)(x - 12) = 0$$

May 8-8:08 PM

Solving for a Product of ZERO, NOT in factored form Solve for the given unknowns:

(a)
$$x^2 - 8x = 0$$

(b)
$$x^2 + 7x + 12 = 0$$

(c)
$$2x^2 - 13x + 15 = 0$$

(d)
$$x^2 - 9 = 0$$

Solving for a Quadratic - Mixed Types Solve for the given unknowns:

- (a) $x^2 = 12x$
- (b) $x^2 + 8x = -12$
- (c) $x^2 + 2 = -3x$
- (d) $3x^2 = 27$

May 8-8:08 PM

Success Criteria

- collect all terms to one side, leave a Zero on the other side
- put in factored form to take advantage of the following concept
- \bullet (a)(b) = 0 , "a" or "b" must be zero, find the value that will make each bracket equal Zero

Factored Form Approach

Find the Zeros:

$$y = 2(x-1)(x+4)$$
 $y = -2(x+7)(x-3)$

Recall: The <u>axis of symmetry</u> is the average of any two x-values that have the same y-values, so the average of the zeros is the axis of symmetry, and the x-value of the vertex.

Now that we have the *x*-value of the vertex how can we find the *y*-value?

Mar 22-9:59 AM

Factored Form Approach

- 1. Find the x intercepts
- 2. Find the axis of symmetry
- 3. Find the vertex
- 4. Use the "a" value to determine max or min

Completing the Square

Oct 14-10:06 PM

Feb 12-11:53 AM

To complete the square we only need to work with the $ax^2 + bx$

Guidelines

- 1. a = 1 before you start, this can be accomplished by factoring
- 2. find half of the b term and then square it
- 3. add and subtract that value to the expression, writing the positive term first
- 4. the first three terms should make up a perfect square trinomial, and can be rewritten with brackets squared

Example
$$x^2 - 2x + 5$$

May 9-11:57 AM

Small Tweak Coming - Be Careful

To complete the square we only need to work with the $\mathbf{ax}^2 + \mathbf{bx}$ terms.

Guidelines

- 1. a = 1 before you start, this can be accomplished by factoring
- 2. find half of the b term and then square it
- 3. add and subtract that value to the expression, writing the positive term first
- 4. the first three terms should make up a perfect square trinomial, and can be rewritten with brackets squared
- 5. The term left inside the brackets is affected by the multiplying number out front
- 6. Apply the multiplier with Distributive property and collect like terms. Done!

Example
$$2x^2 + 16x$$

May 9-11:57 AM

To complete the square we only need to work with the $ax^2 + bx$ terms.

Guidelines

- 1. a = 1 before you start, this can be accomplished by factoring
- 2. find half of the b term and then square it
- 3. add and subtract that value to the expression, writing the positive term first
- 4. the first three terms should make up a perfect square trinomial, and can be rewritten with brackets squared
- 5. The term left inside the brackets is affected by the multiplying number out front
- 6. Apply the multiplier with Distributive property and collect like terms. Done!

Example
$$2x^2 + 12x + 7$$

Where might this technique be useful?

Example

Write the following in vertex form.

$$y = x^2 + 6x + 3$$

May 9-12:34 PM

Section 3.2 - Finding Max and Min Values

Learning Goal: By the end of today, we will be able to determine the maximum or minimum values using

- (i) a factored form approach
- (ii) a vertex form approach (completing the square)

Consolidation Questions:

Pg. 153 #1,3,4,8,9

May 8-8:10 PM