Warm Up

- (a) 45 27 (change set up if needed)
- (b) 34 x 12
- (c) 4 + (3)(6) 5

Solving Simple Equations

(One step problems)

Learning Goal:

By the end of today, I will be able to solve simple (one step equations using the opposite operations of adding/subtracting/multiplying and dividing.

$$10 = 10$$

Is this a TRUE statement?

We can imagine an equal sign as acting like a scale balance or teeter totter. When each side has the same value, regardless of appearance, it is considered EQUAL or balanced.

$$\frac{10=10}{\triangle}$$

Are the following True or False?

- (a) 20 = 18 + 2
- (b) 4 19 = -15
- (c) $45 \div 15 = 12 9$
- (d) $(9)(8) = 36 \times 2$

Therefore, it is possible for left and right side to be equal in magnitude, but appear differently.

This is a very important concept to understand before solving equations.

What is the missing value to make the following statements true?

- (a) 24 = 12 x
- (b) 34 ___ = 11
- (c) $\pm 12 = 5$
- (d) $(\underline{})(-6) = 42$

Instead of blank spaces we can use "variables" or "unknowns" that are represented with letters. Those variables act like containers for numbers that we don't yet know.

ie.

If I perform the SAME mathematical operation to BOTH sides of the equal sign, does the statement remain true?

$$10 = 10$$

Solving an Equation		
	value of the variable, we can use our four main rations, adding, subtracting, multiplying, and	
_	late the variable by itself. The coefficient (the of the variable) should be "1".	

$$n + 3 = 7$$

(drag and drop)

What's in the box?

Algebra Technique

$$n + 3 = 7$$

$$n - 6 = 3$$

What's in the box?

Algebra Technique

$$n - 6 = 3$$

$$2n = 12$$

1		

Algebra Technique

$$2n = 12$$

$$\frac{n}{3} = 4$$

(drag and drop)

(How many groups of three fit into the unknown number? Four.)

To "undo" an adding operation, we would need to use a subtracting operation, and vice versa.

To "undo" a multiplication operation, we would need to use a division operation, and vice versa.

Inverse Operations or Opposite Operations

Solve the following for the given unknown, be sure to show the opposite operation being used.

- (a) n 15 = 32
- (b) 6n = 18

(c) x + 33 = -4

(d) $m \div 14 = 5$

Math - task - simple equations.doc